Blair Felter

By: Blair Felter on June 14th, 2019

Print/Save as PDF

What is Edge Computing and Is It the Next Big Thing? What Business Leaders Need to Know About Edge Computing

Edge Computing | Data Center

Edge computing is an exciting development in the ongoing search for network infrastructure solutions that deliver speed and reliability across a wide range of industries. Often touted as the “next big thing,” many companies are surely wondering how edge computing differs from more traditional data processing solutions and how it could benefit their business.

What is Edge Computing?

Put simply, edge computing relocates data processing from a central server to the “edge” of a cloud network, closer to where the data itself originates. In a traditional network architecture, data is gathered along the edge of the network and transferred to the central server, which contains all the computing power needed to analyze it. In an edge computing framework, most of that data remains on the periphery, where it can be analyzed and applied in real time much closer to intended users.

The speed and flexibility afforded by this approach to handling data creates an exciting range of possibilities for organizations. To understand how a business might be affected by edge computing, here are a few key factors worth exploring:

The IoT Explosion

No development has affected edge computing architecture more than the rapid growth of the Internet of Things (IoT) market. Edge devices connected to the internet generate huge amounts of data that provides an enormous opportunity to businesses, but also an equally enormous challenge in terms of managing, analyzing, and storing that data. Traditionally, these processes were handled in a company’s private cloud or data center, but the sheer volume of data has strained these networks to their absolute limits.

Edge systems alleviate this pressure by pushing data processing away from a centralized core and distributing it among local edge data centers and other devices closer to the source. Analyzing data closer to where it’s collected provides huge benefits in terms of cost and efficiency. By utilizing edge systems, companies can also address problems associated with low connectivity and the cost of transferring data to a centralized server.

Industrial organizations stand to benefit immensely from edge computing because it allows them to transform manufactured IoT edge devices (especially industrial machines) into extensions of their network infrastructure. Combined with modern machine learning and real-time analytics, data can be gathered, analyzed, and applied faster than ever before, enabling IoT edge devices to self-regulate and respond to changes.

Speed and User Expectations

For many companies, speed is absolutely vital to their core business. The financial sector’s reliance upon high-frequency trading algorithms, for instance, means that a slowdown of mere milliseconds can have expensive consequences. In the healthcare industry, losing a fraction of a second can even be a matter of life or death. And for businesses that provide data-driven services to customers, lagging speeds can frustrate customers and cause long term damage to a brand. Speed is no longer just a competitive advantage—it is a best practice.

Ensuring speed means combating latency. By processing data closer to the source and prioritizing traffic, edge computing reduces the amount of data flowing to and from the primary network, leading to lower latency and faster overall speed. Physical distance is critical to performance as well. By locating edge systems in data centers geographically closer to end users and distributing processing accordingly, companies can greatly reduce the distance data must travel before services can be delivered. These edge networks ensure a faster, seamless experience for their customers, who expect to have access to their content and applications on demand anywhere at any time.

Scalability

As companies grow, they cannot always anticipate their IT infrastructure needs. Fortunately, the development of cloud-based technology and edge computing have made it easier than ever for businesses to scale their operations. Increasingly, computing, storage, and analytics capabilities are being bundled into devices with smaller footprints that can be situated nearer to end users. Edge systems allow companies to leverage these devices to expand their edge network’s reach and capabilities.

Expanding data collection and analysis no longer requires companies to establish centralized, private data centers, which can be expensive to build, maintain, and replace when it’s time to grow again. By combining colocation services with regional edge computing data centers, organizations can expand their edge network reach quickly and cost-effectively. The flexibility of not having to rely upon a centralized infrastructure allows them to adapt quickly to evolving markets and scale their data and computing needs more efficiently.

Security Concerns

Edge computing’s reliance upon smaller data centers and IoT edge devices presents a different range of security concerns than traditional cybersecurity approaches. Any company looking at edge computing solutions needs to take these threats seriously, especially if they plan to rely more heavily upon IoT edge devices. Since edge computing framework is more widely distributed than a traditional server-based network, there is a greater number of possible attack vectors for hackers to exploit.

Fortunately, many of these security concerns can be alleviated by edge data centers that demonstrate a commitment to protecting their customers and their data. Compliance standards such as ISO 27001 and HIPAA/HITECH ensure that a data center provides both resilient infrastructure and strong brand protection.

5G and Mobile Edge Computing

The proliferation of 5G networks, which will increase bandwidth significantly and make it easier to transmit high volumes of cellular data, opens up a number of opportunities for edge computing applications. Since 5G will help to combat latency with its distributed architecture, companies will be able to use these networks to expand their own network edge and move data far more efficiently. Rather than having to route everything back to a centralized server, overlapping 5G networks will allow them to keep more data on the edge. These edge networks will also help to overcome the latency-inducing “last mile” problem, in which transmitted data bottlenecks through a series of sub-optimal connections before reaching its intended users.

Shifting data processing to the edge of the network can help companies take advantage of the growing number of IoT edge devices, improve network speeds, and enhance customer experiences. The scalable nature of edge computing also makes it an ideal solution for fast growing, agile companies, especially if they’re already making use of colocation data centers and cloud infrastructure. By taking advantage of edge computing, companies can optimize their networks to provide flexible and reliable service that will bolster their brand and keep their customers happy.

 
Speak to an Expert

About Blair Felter

As the Marketing Director at vXchnge, Blair is responsible for managing every aspect of the growth marketing objective and inbound strategy to grow the brand. Her passion is to find the topics that generate the most conversations.

  • Connect with Blair Felter on: