See the vXchnge Difference at Our National Colocation Data Centers

Schedule a Tour

The Benefits and Potential of Edge Computing

By: Kaylie Gyarmathy on November 13, 2020

Edge computing is an exciting new approach to network architecture that helps organizations break beyond the limitations imposed by traditional cloud-based networks. Although cloud computing continues to play an important role in modern network architecture, the exciting possibilities offered by Internet of Things (IoT) devices, which are capable of processing the data they gather closer to the source, are forcing companies to rethink their approach to IT infrastructure.

Often touted as the “next big thing,” many companies are surely wondering how edge computing differs from more traditional data processing solutions and how it could benefit their business. While the basic principles behind edge computing are relatively straightforward, the substantial benefits of this new approach to network architecture are not always so obvious. Whether they’re trying to break into the IoT market or find better ways to deliver content services, companies need to be aware of the advantages offered by edge computing.

Quick Links

What is Edge Computing?

Traditional cloud computing networks are highly centralized, with data being gathered on the outermost edges and transmitted back to the main servers for processing. This architecture grew out the fact that most of the devices located near the edge lacked the computational power and storage capacity to analyze or process the data they collected. Even as more devices became capable of connecting to networks over cellular and WiFi, their functionality was relatively limited by their hardware capabilities.

All of that has changed in recent years thanks to the miniaturization of processing and storage technology. Today’s IoT devices are quite powerful, capable of gathering, storing, and processing more data than ever before. This has opened up opportunities for companies to optimize their networks and relocate more processing functions closer to where data is gathered at the network edge, where it can be analyzed and applied in real time much closer to intended users. 

Since the data doesn’t have to travel all the way back to the central server for the device to know that a function needs to be executed, edge computing networks can greatly reduce latency and enhance performance. The speed and flexibility afforded by this approach to handling data creates an exciting range of possibilities for organizations.

The 5 Best Benefits of Edge Computing

1. Speed

For many companies, speed is absolutely vital to their core business. The financial sector’s reliance upon high-frequency trading algorithms, for instance, means that a slowdown of mere milliseconds can have expensive consequences. In the healthcare industry, losing a fraction of a second can even be a matter of life or death. And for businesses that provide data-driven services to customers, lagging speeds can frustrate customers and cause long term damage to a brand. Speed is no longer just a competitive advantage—it is a best practice.

The most important benefit of edge computing is its ability to increase network performance by reducing latency. Since IoT edge computing devices process data locally or in nearby edge data centers, the information they collect doesn’t have to travel nearly as far as it would under a traditional cloud architecture.

It’s easy to forget that data doesn’t travel instantaneously; it’s bound by the same laws of physics as everything else in the known universe. Current commercial fiber-optic technology allows data to travel as fast as 2/3 the speed of light, moving from New York to San Francisco in about 21 milliseconds. While that sounds fast, it fails to consider the sheer amount of data being transmitted. With the world expected to generate up to 44 zettabytes (one zettabyte equals a trillion gigabytes) of data in 2020, digital traffic jams are almost guaranteed.

There’s also the problem of the “last mile” bottleneck, in which data must be routed through local network connections before reaching its final destination. Depending upon the quality of these connections, the “last mile” can add anywhere between 10 to 65 milliseconds of latency.

By processing data closer to the source and reducing the physical distance it must travel, edge computing can greatly reduce latency. The end result is higher speeds for end users, with latency measured in microseconds rather than milliseconds. Considering that even a single moment of latency or downtime can cost companies thousands of dollars, the speed advantages of edge computing cannot be overlooked.

2. Security

While the proliferation of IoT edge computing devices does increase the overall attack surface for networks, it also provides some important security advantages. Traditional cloud computing architecture is inherently centralized, which makes it especially vulnerable to distributed denial of service (DDoS) attacks and power outages. Edge computing distributes processing, storage, and applications across a wide range of devices and data centers, which makes it difficult for any single disruption to take down the network.

One major concern about IoT edge computing devices is that they could be used as a point of entry for cyberattacks, allowing malware or other intrusions to infect a network from a single weak point. While this is a genuine risk, the distributed nature of edge computing architecture makes it easier to implement security protocols that can seal off compromised portions without shutting down the entire network.

Since more data is being processed on local devices rather than transmitting it back to a central data center, edge computing also reduces the amount of data actually at risk at any one time. There’s less data to be intercepted during transit, and even if a device is compromised, it will only contain the data it has collected locally rather than the trove of data that could be exposed by a compromised server.

Even if an edge computing architecture incorporates specialized edge data centers, these often provide additional security measures to guard against crippling DDoS attacks and other cyberthreats. A quality edge data center should offer a variety of tools clients can use to secure and monitor their networks in real time.

3. Scalability

As companies grow, they cannot always anticipate their IT infrastructure needs, and building a dedicated data center is an expensive proposition. In addition to the substantial up-front construction costs and ongoing maintenance, there’s also the question of tomorrow’s needs. Traditional private facilities place an artificial constraint on growth, locking companies into forecasts of their future computing needs. If business growth exceeds expectations, they may not be able to capitalize on opportunities due to insufficient computing resources.

Fortunately, the development of cloud-based technology and edge computing have made it easier than ever for businesses to scale their operations. Increasingly, computing, storage, and analytics capabilities are being bundled into devices with smaller footprints that can be situated nearer to end users. Edge systems allow companies to leverage these devices to expand their edge network’s reach and capabilities.

Expanding data collection and analysis no longer requires companies to establish centralized, private data centers, which can be expensive to build, maintain, and replace when it’s time to grow again. By combining colocation services with regional edge computing data centers, organizations can expand their edge network reach quickly and cost-effectively. The flexibility of not having to rely upon a centralized infrastructure allows them to adapt quickly to evolving markets and scale their data and computing needs more efficiently.

Edge computing offers a far less expensive route to scalability, allowing companies to expand their computing capacity through a combination of IoT devices and edge data centers. The use of processing-capable edge computing devices also eases growth costs because each new device added doesn’t impose substantial bandwidth demands on the core of a network.

4. Versatility

The scalability of edge computing also makes it incredibly versatile. By partnering with local edge data centers, companies can easily target desirable markets without having to invest in expensive infrastructure expansion. Edge data centers allow them to service end users efficiently with little physical distance or latency. This is especially valuable for content providers looking to deliver uninterrupted streaming services. They also do not constrain companies with a heavy footprint, allowing them to nimbly shift to other markets should economic conditions change.

Edge computing also empowers IoT devices to gather unprecedented amounts of actionable data. Rather than waiting for people to log in with devices and interact with centralized cloud servers, edge computing devices are always on, always connected, and always generating data for future analysis. The unstructured information gathered by edge networks can either be processed locally to deliver quick services or delivered back to the core of the network where powerful analytics and machine learning programs will dissect it to identify trends and notable data points. Armed with this information, companies can make better decisions and meet the true needs of the market more efficiently. 

By incorporating new IoT devices into their edge network architecture, companies can offer new and better services to their customers without completely overhauling their IT infrastructure. Purpose-designed devices provide an exciting range of possibilities to organizations that value innovation as a means of driving growth. It’s a huge benefit for industries looking to expand network reach into regions with limited connectivity (such as the healthcare, agricultural, and manufacturing sector).

5. Reliability

Given the security advantages provided by edge computing, it should not come as a surprise that it offers better reliability as well. With IoT edge computing devices and edge data centers positioned closer to end users, there is less chance of a network problem in a distant location affecting local customers. Even in the event of a nearby data center outage, IoT edge computing devices will continue to operate effectively on their own because they handle vital processing functions natively.

By processing data closer to the source and prioritizing traffic, edge computing reduces the amount of data flowing to and from the primary network, leading to lower latency and faster overall speed. Physical distance is critical to performance as well. By locating edge systems in data centers geographically closer to end users and distributing processing accordingly, companies can greatly reduce the distance data must travel before services can be delivered. These edge networks ensure a faster, seamless experience for their customers, who expect to have access to their content and applications on demand anywhere at any time.

With so many edge computing devices and edge data centers connected to the network, it becomes much more difficult for any one failure to shut down service entirely. Data can be rerouted through multiple pathways to ensure users retain access to the products and information they need. Effectively incorporating IoT edge computing devices and edge data centers into a comprehensive edge architecture can therefore provide unparalleled reliability.

Making the Edge Computing Business Case

As innovative devices like autonomous vehicles and medical sensors become more common, edge computing will have an increasingly large impact on society. With edge computing framework, organizations will be able to extend network services into areas that were previously beyond the reach of traditional architectures. In the case of many devices, the ability to improve performance could literally save lives. Consider, for instance, the health impact of using medical devices in difficult-to-reach rural areas with limited healthcare options. Edge computing can also improve safety for industrial manufacturing by identifying equipment problems before they cause malfunctions that could injure workers.

Edge Computing and IoT

The number of IoT devices in circulation today is already staggering, and there’s plenty of data to suggest that this figure will increase significantly in the coming years. With so many IoT devices connected to networks around the world, edge computing is already having a major impact on how companies design their systems. The ongoing demand for faster, more efficient services and content delivery will push organizations to improve their existing edge networks. Companies that fail to invest in edge computing today could find themselves in the unenviable position of scrambling to catch up to their competitors in the years ahead.

Devices connected to the internet generate huge amounts of data that provides an enormous opportunity to businesses, but also an equally enormous challenge in terms of managing, analyzing, and storing that data. Traditionally, these processes were handled in a company’s private cloud or data center, but the sheer volume of data has strained these networks to their absolute limits. 

Edge systems alleviate this pressure by pushing data processing away from a centralized core and distributing it among local edge data centers and other devices closer to the source. Analyzing data closer to where it’s collected provides huge benefits in terms of cost and efficiency. By utilizing edge systems, companies can also address problems associated with low connectivity and the cost of transferring data to a centralized server.

Industrial IoT

Industrial organizations stand to benefit immensely from edge computing because it allows them to transform manufactured IoT edge devices (especially industrial machines) into extensions of their network infrastructure. Combined with modern machine learning and real-time analytics, data can be gathered, analyzed, and applied faster than ever before, enabling IoT edge devices to self-regulate and respond to changes.

5G Networks

The proliferation of 5G networks, which will increase bandwidth significantly and make it easier to transmit high volumes of cellular data, opens up a number of opportunities for edge computing applications. Since 5G will help to combat latency with its distributed architecture, companies will be able to use these networks to expand their own network edge and move data far more efficiently. Rather than having to route everything back to a centralized server, overlapping 5G networks will allow them to keep more data on the edge. These edge networks will also help to overcome the latency-inducing “last mile” problem, in which transmitted data bottlenecks through a series of sub-optimal connections before reaching its intended users. The technology will also see the expansion of smart city initiatives.

Drawbacks of Edge Computing

By far the greatest challenge of edge computing is making these distributed networks secure. Although there are significant security advantages to an edge network, a poorly implemented system could leave itself vulnerable. Edge computing’s reliance upon smaller data centers and IoT edge devices presents a different range of security concerns than traditional cybersecurity approaches. Any company looking at edge computing solutions needs to take these threats seriously, especially if they plan to rely more heavily upon IoT edge devices. Since edge computing framework is more widely distributed than a traditional server-based network, there is a greater number of possible attack vectors for hackers to exploit.

That’s why industry experts are already hard at work thinking about how to implement new approaches like zero trust security to ensure that the IoT devices powering edge computing framework aren’t being turned against users and organizations. With so much data being gathered, organizations can’t afford to tolerate the risk of a data breach. Fortunately, many of these security concerns can be alleviated by edge data centers that demonstrate a commitment to protecting their customers and their data. Compliance standards such as ISO 27001 and HIPAA/HITECH ensure that a data center provides both resilient infrastructure and strong brand protection.

The Future of Edge Computing

Shifting data processing to the edge of the network can help companies take advantage of the growing number of IoT edge devices, improve network speeds, and enhance customer experiences. The scalable nature of edge computing also makes it an ideal solution for fast growing, agile companies, especially if they’re already making use of colocation data centers and cloud infrastructure. By taking advantage of edge computing, companies can optimize their networks to provide flexible and reliable service that will bolster their brand and keep their customers happy.

Edge computing offers several advantages over traditional forms of network architecture and will surely continue to play an important role for companies going forward. With more and more internet-connected devices hitting the market, innovative organizations have likely only scratched the surface of what’s possible with edge computing.

Hi there! Speak to an Expert About Your Company's Specific Data Center Needs